In this article, our main aim is to investigate the parameters estimation of inverse Weibull distribution in the frame work of progressively type II. We consider the censored sample from a two parameters inverse Weibull. The point estimators of the parameters derived by using the maximum likelihood method. The exact joint confidence region and confidence interval for the parameters are obtained. A numerical example is provided to illustrate the proposed. estimation methods developed here.
Published in | American Journal of Theoretical and Applied Statistics (Volume 2, Issue 6) |
DOI | 10.11648/j.ajtas.20130206.11 |
Page(s) | 149-153 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2013. Published by Science Publishing Group |
Joint Confidence Region, Maximum Likelihood Estimator, Progressively Type II Censored Sample, Confidence Interval
[1] | A. C. Cohen, Progressively censored samples in life testing. Techno metrics, 5, 327-339, (1963). |
[2] | N. R. Mann, Best linear invariant estimation for Weibull parameters under progressive censoring, Technometrics, 13, 521-533, (1971). |
[3] | J. Y. Wong, Simultaneously estimating the three Weibull parameters from progressively censored samples, Microelectronics and Reliability, 33, 2217- 2224, (1993). |
[4] | N. Balakrishnan, and R. Aggarwala, Progressive Censoring-Theory, Methods, and Applications, Birkhauser, Boston, SBN 978-0-8176-4001-9 e-book package (2000). |
[5] | Wu. Shuo-Jye Estimation of the parameters of the weibull distribution with progressively censored data, Journal of Japan Statistical Society, 2, 155-163, (2002). |
[6] | W. B. Nelson, Applied Life Data Analysis. John Wiley & Sons, New York, (1982). |
[7] | R. Calaria, and G. Pulcini, On the maximum likelihood and least-squares estimation in the inverse Weibull distributions. Statistical Application, 2(1), 53-66, (1990). |
[8] | M. Maswedah, Conditional confidence interval estimation for the inverse Weibull distribution based on censored generalized order statistics. Journal of Statisticl Computation and Simulation, 73, 887-898, (2003). |
[9] | R. Dumonceaux, and C. E. Antle, Discrimination between the lognormal and Weibull distribution. Techno metrics, 15, 923-926, (1973). |
[10] | N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions. Vol. 2, second edition. John Wiley & Sons New York, (1995). |
[11] | D. N. P. Murthy, M. Xie, and R. Jiang, Weibull Model. John Wiley & Sons, New York, (2004). |
[12] | M. M, Mohie El-Din,,and F. H. Riad, Estimation and Prediction for the Inverse Weibull Distribution Based on Records, Journal of Advanced Research in Statistics and Probability (JARSP), 3(2), 20 – 27, (2011). |
[13] | P. Erto, New Practical Bayes estimators for the 2-Parameter Weibull distribution, IEEE Transactions on Reliability R-31, 194-197, (1982), |
[14] | M. Marušić, , D. Marković, and D. Jukić , Least squares fitting the three-parameter inverse Weibull density, Math. Commun., Vol. 15, No. 2, pp. 539-553, (2010). |
[15] | D. R. Thomas, and W. M. Wilson, Linear order statistic estimation for the two parameter Weibull and extreme value distribution from type-II progressively censored samples, Technometrics, 14, 679-691, (1972). |
APA Style
Mostafa M. MohieEl-Din, Fathy H. Riad, Mohamed A. El-Sayed. (2013). Parameters Estimation Based on Progressively Censored Data from Inverse Weibull Distribution. American Journal of Theoretical and Applied Statistics, 2(6), 149-153. https://doi.org/10.11648/j.ajtas.20130206.11
ACS Style
Mostafa M. MohieEl-Din; Fathy H. Riad; Mohamed A. El-Sayed. Parameters Estimation Based on Progressively Censored Data from Inverse Weibull Distribution. Am. J. Theor. Appl. Stat. 2013, 2(6), 149-153. doi: 10.11648/j.ajtas.20130206.11
AMA Style
Mostafa M. MohieEl-Din, Fathy H. Riad, Mohamed A. El-Sayed. Parameters Estimation Based on Progressively Censored Data from Inverse Weibull Distribution. Am J Theor Appl Stat. 2013;2(6):149-153. doi: 10.11648/j.ajtas.20130206.11
@article{10.11648/j.ajtas.20130206.11, author = {Mostafa M. MohieEl-Din and Fathy H. Riad and Mohamed A. El-Sayed}, title = {Parameters Estimation Based on Progressively Censored Data from Inverse Weibull Distribution}, journal = {American Journal of Theoretical and Applied Statistics}, volume = {2}, number = {6}, pages = {149-153}, doi = {10.11648/j.ajtas.20130206.11}, url = {https://doi.org/10.11648/j.ajtas.20130206.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajtas.20130206.11}, abstract = {In this article, our main aim is to investigate the parameters estimation of inverse Weibull distribution in the frame work of progressively type II. We consider the censored sample from a two parameters inverse Weibull. The point estimators of the parameters derived by using the maximum likelihood method. The exact joint confidence region and confidence interval for the parameters are obtained. A numerical example is provided to illustrate the proposed. estimation methods developed here.}, year = {2013} }
TY - JOUR T1 - Parameters Estimation Based on Progressively Censored Data from Inverse Weibull Distribution AU - Mostafa M. MohieEl-Din AU - Fathy H. Riad AU - Mohamed A. El-Sayed Y1 - 2013/09/30 PY - 2013 N1 - https://doi.org/10.11648/j.ajtas.20130206.11 DO - 10.11648/j.ajtas.20130206.11 T2 - American Journal of Theoretical and Applied Statistics JF - American Journal of Theoretical and Applied Statistics JO - American Journal of Theoretical and Applied Statistics SP - 149 EP - 153 PB - Science Publishing Group SN - 2326-9006 UR - https://doi.org/10.11648/j.ajtas.20130206.11 AB - In this article, our main aim is to investigate the parameters estimation of inverse Weibull distribution in the frame work of progressively type II. We consider the censored sample from a two parameters inverse Weibull. The point estimators of the parameters derived by using the maximum likelihood method. The exact joint confidence region and confidence interval for the parameters are obtained. A numerical example is provided to illustrate the proposed. estimation methods developed here. VL - 2 IS - 6 ER -