In various degenerate donor-silicon systems, taking into account the effects of donor size and heavy doping and using an effective autocorrelation function for the potential fluctuations expressed in terms of the Heisenberg uncertainty relation and also an expression for the Gaussian average of , a ≥ 1 being the kinetic energy of the electron, calculated by the Kane integration method (KIM), we investigated the density of states, the optical absorption coefficient and the electrical conductivity, noting that this average expression calculated by the KIM was found to be equivalent to that obtained by the Feynman path-integral method. Then, those results were expressed in terms of for total electron energy , vanished at the conduction-band edge: , and for exhibited their exponential tails, going to zero as , and presenting the maxima, in good accordance with an asymptotic form for exponential conduction-band tail obtained by Halperin and Lax, using the minimum counting methods. Further, in degenerate d-Si systems at low temperatures, using an expression for the average of , p ≥ 3/2, calculated using the Fermi-Dirac distribution function, we determined the mobility, electrical conductivity, resistivity, Hall factor, Hall coefficient, Hall mobility, thermal conductivity, diffusion coefficient, absolute thermoelectric power, Thomson coefficient, Peltier coefficient, Seebeck thermoelectric potential, and finally dimensionless figure of merit, which were also compared with experimental and theoretical results, suggesting a satisfactory description given for our obtained results.
Published in | American Journal of Modern Physics (Volume 7, Issue 4) |
DOI | 10.11648/j.ajmp.20180704.13 |
Page(s) | 136-165 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2018. Published by Science Publishing Group |
Donor Size, Heavy Doping, Electrical Conductivity, Hall Effect, Diffusion Coefficient
[1] | R. J. Van Overstraeten, IEEE Trans. Electron Dev., vol. ED-20, pp. 290-298, 1973. |
[2] | R. K. Jain, Physica Status Solidi (a), vol. 42, 221-226, 1977. |
[3] | H. Van Cong and S. Brunet, Solar Cells, vol. 5, pp. 355-365, 1982. |
[4] | H. Van Cong, Physica Status Solidi (a), vol. 149, pp. 619-628, 1995. |
[5] | H. Van Cong and G. Debiais, Solar Energy Materials and Solar Cells, vol. 45, pp. 385-399, 1997; H. Van Cong, Physica Status Solidi (a), vol. 171, pp. 631-645, 1999. |
[6] | D. M. Riffe, J. Opt. Soc. Am. B, vol. 19, pp. 1092-1100, 2002. |
[7] | J. Wagner and J. A. del Alamo, J. Appl. Phys., vol. 63, pp. 425-429, 1988. |
[8] | R. Pässler, Phys. Rev. B, vol. 66, p. 085201, 2002. |
[9] | R. Pässler, Phys. Status Solidi B, vol. 236, pp. 710-728, 2003. |
[10] | D. Yan and A. Cuevas, J. Appl. Phys., vol. 114, p. 044508, 2013. |
[11] | H. Van Cong, S. Abide, B. Zeghmati and X. Chesneau, Physica B, vol. 436, pp. 130-139, 2014. |
[12] | H. Van Cong, Physica B, vol. 487, pp. 90-101, 2016. |
[13] | J. Binbin and S. Chihtang, J. Semicond., vol. 32, p. 121002, 2011. |
[14] | E. O. Kane, Phys. Rev., vol. 131, pp. 79-88, 1963. |
[15] | M. Abramowitz and I. A. Stegum, Handbook of Mathematical Functions, Dover Publications, Inc., New York, 1972; I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, Inc., New York, 1980. |
[16] | R. B. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integral, McGraw-Hill, New York, 1965. |
[17] | S. F. Edwards, Proc. Phys. Soc., vol. 85, pp. 1-25, 1965. |
[18] | I. M. Lifshitz, Sov. Phys. –USp., vol. 7, pp. 549-573, 1965 [Russian original: Usp. Fiz. Nauk, vol. 83, pp. 617-663, 1964]. |
[19] | I. Halperin and M. Lax, Phys. Rev., vol. 148, pp. 722-740, 1966. |
[20] | R. Friedberg and J. M. Luttinger, Phys. Rev. B, vol. 12, pp. 4460-4474, 1975. |
[21] | H. Van Cong, J. Phys. Chem. Solids, vol. 36, pp. 1237-1240, 1975. |
[22] | H. Van Cong, S. Charar, S. Brunet, M. Averous and J. L. Birman, Physica Status Solidi (b), vol. 118, pp. 757-777, 1982; H. Van Cong, S. Brunet, S. Charar, J. L. Birman and M. Averous, Solid State Commun., vol. 45, pp. 611-614, 1983. |
[23] | V. Sa-yakanit, W. Sritrakool, and H. R. Glyde, Phys. Rev. B, vol. 25, pp. 2776-2780, 1982. |
[24] | P. V. Mieghem, Rev. Mod. Phys., vol. 64, pp. 755-793, 1982. |
[25] | H. Van Cong, Il Nuovo Cimento D, vol. 6, pp. 513-520, 1985. |
[26] | X. Chang and A. Izabelle, J. Appl. Phys., vol. 65, pp. 2162-2164, 1989. |
[27] | H. Van Cong and G. Debiais, J. Appl. Phys., vol. 73, pp. 1545-15463, 1993. |
[28] | T. H. Nguyen and S. K. O’Leary, J. Appl. Phys., vol. 88, pp. 3479-3483, 2000. |
[29] | T. Lukes and K. T. S. Somaratna, J. Phys. C: Solid St. Phys., vol. 3, pp. 2044-2056, 1970. |
[30] | H. Van Cong, Phil. Mag., vol. 28, pp. 983-991, 1973. |
[31] | J. I. Pankove, Optical Process in Semiconductors, Dover Publications, Inc., New York, 1975. |
[32] | H. A. Weakliem and D. Redfield, J. Appl. Phys., vol. 50, pp. 1491-1493, 1979. |
[33] | D. E. Aspnes and A. A. Studna, Phys. Rev. B, vol. 27, pp. 985-1009, 1983. |
[34] | D. E. Aspnes, A. A. Studna, and E. Kinsbron, Phys. Rev. B, vol. 29, pp. 768-779, 1984. |
[35] | L. Vina and M. Cardona, Phys. Rev. B, vol. 29, pp. 6739-6751, 1984. |
[36] | E. D. Palik, Handbook of Optical Constants of Solids I and II, Academic Press, Inc., New York, 1985 and 1991, respectively. |
[37] | S. John, C. Soukoulis, M. H. Cohen, and E. N. Economou, Phys. Rev. Lett., vol. 57, pp. 1777-1780, 1986. |
[38] | P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, Phys. Rev. B, vol. 36, pp. 4821-4830, 1987. |
[39] | F. Orapunt and S. K. O’Leary, Solid State Commun., vol. 151, 411-414, 2011. |
[40] | A. R. Forouhi and I. Bloomer, Phys. Rev. B, vol. 38, pp. 1865-1874, 1988. |
[41] | G. E. Jr. Jellison and F. A. Modine, Appl. Phys. Lett., vol. 69, pp. 371-373, 1996. |
[42] | L. Ding, T. P. Chen, Y. Liu, C. Y. Ng, and S. Fung, Phys. Rev. B, vol. 72, p. 125419, 2005. |
[43] | H. Van Cong and S. Brunet, Solid State Commun., vol. 58, pp. 551-554, 1986. |
[44] | N. K. Hon, R. Soref, and B. Jalali, J. Appl. Phys., vol. 110, pp. 011301, 2011. |
[45] | T. Wang, N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D. T. H. Tan, Optics express, vol. 21, 32192, 2013. |
[46] | L. Vivien and L. Pavesi, Handbook of Silicon Photonics, Taylor and Francis Group, LLC, New York, 2013. |
[47] | A. Malasi, H. Taz, M. Ehrsam, J. Goodwin, H. Garcia, and R. Kalyanaraman, APL Photonics, vol. 1, p. 076101, 2016. |
[48] | H. T. Nguyen, F. E. Rougieux, B. Mitchell, and D. Macdonald, J. Appl. Phys., vol. 115, p. 043710, 2014. |
[49] | R. J. Jaffe, Degenerate Fermion systems, MIT 8.322 Lecture Notes: Quantum Theory II-2006, 1996. |
[50] | F. J. Morin and J. P. Maita, Phys. Rev., vol. 96, pp. 28-35, 1954. |
[51] | R. Kubo, J. Phys. Soc. Japan, vol. 12, pp. 570-586, 1957. |
[52] | D. A. Greenwood, Proc. Phys. Soc., vol. 71, pp. 585-596, 1958. |
[53] | R. A. Logan, J. F. Gilbert, and F. A. Trumbore, J. Appl. Phys., vol. 32, pp. 131-132, 1961; F. Mousty, P. Ostoja, and L. Passari, J. Appl. Phys., vol. 45, pp. 4576-4580, 1974. |
[54] | P. W. Chapman, O. N. Tufte, J. D. Zook, and D. Long, Phys. Rev., vol. 34, pp. 3291-3295, 1963. |
[55] | J. M. Luttinger, Phys. Rev., vol. 135, pp. A1505-A1514, 1964. |
[56] | J. Zittartz and J. S. Langer, Phys. Rev., vol. 148, pp. 741-747, 1966. |
[57] | R. Jones, J. Phys. C (Solid State Phys.), vol. 8, pp. 190-201, 1970. |
[58] | H. Van Cong and G. Mesnard, Physica Status Solidi (b), vol. 48, pp. 293-310, 1971; vol. 49, pp. 179-189, 1972; vol. 50, pp. 53-58, 1972. |
[59] | M. Yussouff and J. Zittartz, Solid State Commun., vol. 12, pp. 959-962, 1973. |
[60] | M. Finetti and A. M. Mazzone, J. Appl. Phys., vol. 48, pp. 4597-4600, 1977. |
[61] | H. Van Cong, Physica Status Solidi (b), vol. 90, pp. 401-407, 1978. |
[62] | P. T. Landsberg, Handbook on Semiconductors, Volume 1, Basic Properties of Semiconductors, Elsevier Science Publishers B. V., Amsterdam, 1992; Eur. J. Phys., vol. 2, pp. 213-219, 1981. |
[63] | H. Van Cong and Debiais, Solid-St. Electron., vol. 38, pp. 83-87, 1995. |
[64] | T. H. Nguyen and S. K. O’Leary, Appl. Phys. Lett., vol. 83, 1998-2000, 2003; J. Appl. Phys., vol. 98, p. 076102, 2005. |
[65] | A. Khan and A. Das, Z. Naturforsch., vol. 65a, pp. 882-886, 2010; Physica B, vol. 405, pp. 817-821, 2010. |
[66] | V. Palenskis, World J. Condens. Matt. Phys., vol. 4, pp. 123-133, 2014; AIP Advances, vol. 4, p. 047119, 2014. |
[67] | K. P. Ghatak, S. Bhattacharya, and D. De, Einstein Relation in Compound Semiconductors and Their Nanostructures, Springer-Verlag, Berlin, Heidelberg, 2009; K. P. Ghatak, S. Bhattacharya, S. Bhowmik, R. Benedictus, and S. Choudhury, J. Appl. Phys., vol. 103, p. 094314, 2008; K. P. Ghatak and B. Mitra, Physica Scripta., vol. 42, pp. 103-108, 1990. |
[68] | G. A. Slack, J. Appl. Phys., vol. 35, pp. 3460-3466, 1964. |
[69] | G. D. Mahan, J. Appl. Phys., vol. 66, pp. 1578-1583, 1989. |
APA Style
Huynh Van Cong. (2018). Effects of Donor Size and Heavy Doping on Optical, Electrical and Thermoelectric Properties of Various Degenerate Donor-Silicon Systems at Low Temperatures. American Journal of Modern Physics, 7(4), 136-165. https://doi.org/10.11648/j.ajmp.20180704.13
ACS Style
Huynh Van Cong. Effects of Donor Size and Heavy Doping on Optical, Electrical and Thermoelectric Properties of Various Degenerate Donor-Silicon Systems at Low Temperatures. Am. J. Mod. Phys. 2018, 7(4), 136-165. doi: 10.11648/j.ajmp.20180704.13
AMA Style
Huynh Van Cong. Effects of Donor Size and Heavy Doping on Optical, Electrical and Thermoelectric Properties of Various Degenerate Donor-Silicon Systems at Low Temperatures. Am J Mod Phys. 2018;7(4):136-165. doi: 10.11648/j.ajmp.20180704.13
@article{10.11648/j.ajmp.20180704.13, author = {Huynh Van Cong}, title = {Effects of Donor Size and Heavy Doping on Optical, Electrical and Thermoelectric Properties of Various Degenerate Donor-Silicon Systems at Low Temperatures}, journal = {American Journal of Modern Physics}, volume = {7}, number = {4}, pages = {136-165}, doi = {10.11648/j.ajmp.20180704.13}, url = {https://doi.org/10.11648/j.ajmp.20180704.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20180704.13}, abstract = {In various degenerate donor-silicon systems, taking into account the effects of donor size and heavy doping and using an effective autocorrelation function for the potential fluctuations expressed in terms of the Heisenberg uncertainty relation and also an expression for the Gaussian average of , a ≥ 1 being the kinetic energy of the electron, calculated by the Kane integration method (KIM), we investigated the density of states, the optical absorption coefficient and the electrical conductivity, noting that this average expression calculated by the KIM was found to be equivalent to that obtained by the Feynman path-integral method. Then, those results were expressed in terms of for total electron energy , vanished at the conduction-band edge: , and for exhibited their exponential tails, going to zero as , and presenting the maxima, in good accordance with an asymptotic form for exponential conduction-band tail obtained by Halperin and Lax, using the minimum counting methods. Further, in degenerate d-Si systems at low temperatures, using an expression for the average of , p ≥ 3/2, calculated using the Fermi-Dirac distribution function, we determined the mobility, electrical conductivity, resistivity, Hall factor, Hall coefficient, Hall mobility, thermal conductivity, diffusion coefficient, absolute thermoelectric power, Thomson coefficient, Peltier coefficient, Seebeck thermoelectric potential, and finally dimensionless figure of merit, which were also compared with experimental and theoretical results, suggesting a satisfactory description given for our obtained results.}, year = {2018} }
TY - JOUR T1 - Effects of Donor Size and Heavy Doping on Optical, Electrical and Thermoelectric Properties of Various Degenerate Donor-Silicon Systems at Low Temperatures AU - Huynh Van Cong Y1 - 2018/08/08 PY - 2018 N1 - https://doi.org/10.11648/j.ajmp.20180704.13 DO - 10.11648/j.ajmp.20180704.13 T2 - American Journal of Modern Physics JF - American Journal of Modern Physics JO - American Journal of Modern Physics SP - 136 EP - 165 PB - Science Publishing Group SN - 2326-8891 UR - https://doi.org/10.11648/j.ajmp.20180704.13 AB - In various degenerate donor-silicon systems, taking into account the effects of donor size and heavy doping and using an effective autocorrelation function for the potential fluctuations expressed in terms of the Heisenberg uncertainty relation and also an expression for the Gaussian average of , a ≥ 1 being the kinetic energy of the electron, calculated by the Kane integration method (KIM), we investigated the density of states, the optical absorption coefficient and the electrical conductivity, noting that this average expression calculated by the KIM was found to be equivalent to that obtained by the Feynman path-integral method. Then, those results were expressed in terms of for total electron energy , vanished at the conduction-band edge: , and for exhibited their exponential tails, going to zero as , and presenting the maxima, in good accordance with an asymptotic form for exponential conduction-band tail obtained by Halperin and Lax, using the minimum counting methods. Further, in degenerate d-Si systems at low temperatures, using an expression for the average of , p ≥ 3/2, calculated using the Fermi-Dirac distribution function, we determined the mobility, electrical conductivity, resistivity, Hall factor, Hall coefficient, Hall mobility, thermal conductivity, diffusion coefficient, absolute thermoelectric power, Thomson coefficient, Peltier coefficient, Seebeck thermoelectric potential, and finally dimensionless figure of merit, which were also compared with experimental and theoretical results, suggesting a satisfactory description given for our obtained results. VL - 7 IS - 4 ER -