| Peer-Reviewed

The Study of the Photometry and Flare Analysis of Kepler Flare Candidate 2MASS J22285440-1325178

Received: 7 August 2023     Accepted: 28 August 2023     Published: 18 September 2023
Views:       Downloads:
Abstract

The photometry and flare analysis of Kepler flare candidate 2MASS J22285440- 1325178 has been presented. The light curve shows the amplitude distributions for the 2MASS J22285440-1325178. From the light curve, the shorter amplitude represents the short duration of the flares while the larger amplitude show the highest peak of the flares, with amplitude range duration from 7457.70-15482.7700 (e-/sec). The magnitude of the flares varies with times (days) and the light curve, the plot of the light curve demonstrates the frequency of the flares and the range of the magnitude. The amplitude represents the flux peak of each flare, which indicates that flare stars have larger amplitudes and hence larger star spots than normal stars. Our data was obtained from the Milkulski Archive for Space Telescope (MAST). The instrument used for data analysis of 2MASS J22285440-1325178 candidate are python Jupiter notebook software package. In addition, aperture photometric reduction of 2MASS J22285440-1325178 at EPIC 206050032 have been carried out to obtain the light curve. Furthermore, flare amplitude was analyzed as well as the flare rise time and equivalent duration.

Published in American Journal of Astronomy and Astrophysics (Volume 10, Issue 2)
DOI 10.11648/j.ajaa.20231002.11
Page(s) 14-22
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2023. Published by Science Publishing Group

Keywords

Flares, Photometry, Amplitudes, Flux

References
[1] Balona, L. A. (2015). Flare stars across the H–R diagram. Monthly Notices of the Royal Astronomical Society, 447 (3): 2714–2725.
[2] Dzombeta, K. and Percy, J. R. (2019). Flare Stars: A Short Review. Retrieved. 55 (2): 36-40.
[3] Hartman, J. D., Bakos, G, A., Noyes, R, W., Sipocz, B., Kovacs, G., Mazeh, T., … Pal, A. (2011). A Photometric Variability Survey of Field K and M Dwarf Stars with HATNet ´. The Astronomical Journal, 144 (166): 1–24.
[4] Alekseev, I. Y., Chalenko, V. E. and Shakhovsko, D. N. (2000). Rapid UBVRI Photometry of the Active Flare Stars EV Lac and AD Leo. Astronomy Reports, 44 (10): 777–783.
[5] Laher, R. R., Gorjian, V., Rebull, L. M., Masci, F. J., Fowler, J. W., Helou, G., … Law, N. M. (2012). Aperture Photometry Tool. Publications of the Astronomical Society of the Pacific, 124 (917): 737–763.
[6] Guarcello, M. G., Micela, G., Sciortino, S., López-Santiago, J., Argiroffi, C., Reale, F., … Stauffer, J. (2019). Simultaneous Kepler /K2 and XMM-Newton observations of superflares in the Pleiades. Astronomy & Astrophysics, 622 (23): 546-622.
[7] Katsova, M. M. and Nizamov, B. A. (2018). Properties of Kepler Stars with the Most Powerful Flares. Geomagnetism and Aeronomy, 58 (7): 899–904.
[8] Roettenbacher, R. M. and Vida, K. (2018a). The Connection between Starspots and Flares on Main-sequence Kepler Stars. The Astrophysical Journal, 868 (1): 378-566.
[9] Roettenbacher, R. M. and Vida, K. (2018b). The Connection between Starspots and Flares on Main-sequence Kepler Stars. The Astrophysical Journal, 868 (1): 1–8.
[10] Haas, M. R., Batalha, N. M., Bryson, S. T., Caldwell, D. A., Dotson, J. L., Hall, J., … Van Clev, J. E. (2010). Kepler Science Operations. 234 (4): 88-89.
[11] Koch, D. G., Borucki, W. J., Basri, G., Batalha, N. M., Brown, T. M., Caldwell, D., … Wu, H. (2010). Kepler mission design, realized photometric performance, and early science. Astrophysical Journal Letters, 713 (5): 456-501.
[12] Gershberg, R. E. and Knyazeva, S. (2005). Solar-Type Activity in Main-Sequence Stars. In G. Borner, Burkert, A, Burton, W B, Dopita, M A, Eckart, A, Encrenaz, T, … V. Trimble (Eds.), Astronomy and Astrophysics Series 87 (9): 876-879.
[13] Güdel, M. and Nazé, Y. (2009). X-ray spectroscopy of stars. Astronomy and Astrophysics Review, 7 (2): 309–408.
[14] Tamazian, V. S. and Malkov, O. Y. (2014). Catalog of Binary UV Ceti Type Flare Stars. ACTA ASTRONOMICA, 64 (8): 359–369.
[15] Parimucha, Š., Dubovský, P., Vanko, M. and Cokino, M. (2016). Optical flare activity in the low-mass eclipsing binary GJ 3236. Astrophys Space Sci, 361 (302): 1–7.
[16] Bychkov, V. D., Bychkova, L. V., Madej, J. and Panferov, A. A. (2017). On global and local magnetic fields of flare stars with YZ CMi and OT Ser as examples. Astrophysical Bulletin, 8 (2): 178–183.
[17] Savanov, I. S. and Dmitrienko, E. S. (2018). Starspots and Activity of the Flare Star GJ 1243. Astronomy Reports, 62 (4): 273–280.
[18] Kowalski, A. F., Hawley, S. L., Holtzman, J. A., Wisniewski, J. P. and Hilton, E. J. (2010). A white light megaflare on the dM4.5e star YZ CMi. Astrophysical Journal Letters, 714 (1): 98-102.
[19] Melikian, N. D., Tamazian, V. S. and Samsonyan, A. L. (2011). Variation in the Flare Activity of the Star UV Ceti. Astrofizika, 54 (4): 469–475.
[20] Melikian, N. D. (2014). Spectra of Stellar Flares. Continuum Emission. Astrofizika, 57 (1): 77–89.
[21] Kozhevnikova, A. V, Kozhevnikov, V. P. and Alekseev, I. Y. (2018). Photospheric Spots and Flare on the active Dwarf Star FR Cnc. Astrofizika, 61 (1): 30–40.
[22] NASA, (2014). National Aeronautics and space Administration, 2 MASS (two-micron all sky survey) J18354A.
[23] Davenport, J. R. A., Hawley, S. L., Hebb, L., Wisniewski, J. P., Kowalski, A. F., Johnson, E. C., … Hilton, E. J. (2014a). kepler flares, the temporal morphology of white-light flares on gj 1243. The Astrophysical Journal, 797 (11): 122 - 30.
[24] Svanda and Karlick´y (2016). Different method to determine the power indices of the star. 605 (7): 76.
[25] Davenport, J. R. A. (2016). the kepler catalog of stellar flares. The Astrophysical Journal, 829 (1): 23 -25.
[26] Roettenbacher R. M and Vida K. (2018b). Finding flares in Kepler data using machine-learning tools. Astronomy & Astrophysics, 616-163.
[27] Gizis, J. E., Burgasser, A. J., Berger, E., Williams, P. K. G., Vrba, F. J., Cruz, K. L. and Metchev, S. (2013). Kepler monitoring of an L Dwarf I. the Photometric Period and White Light Flares. Astrophysical Journal, 779 2):172 -176.
[28] Makarov, Valeri V, Goldin, Alexey. (2017). Kepler Data on KIC 7341653: A Nearby M Dwarf with Montster Flares and a phase- coherent Variability.
[29] Giampapa, M. (1986). Stellar Analogs of Solar Activity: The Sun in A Stellar Context. In The Sun, Solar Analogs and the Climate (307–415).
[30] Davenport, J. R. A. (2018). The shape of M dwarf flares in Kepler light curves. (320): 128–133.
[31] Davenport, J. R. A., Hawley, S. L., Hebb, L., Wisniewski, J. P., Kowalski, A. F., Johnson, E. C., … Hilton, E. J. (2014b). kepler flares. ii. the temporal morphology of white-light flares on gj 1243. The Astrophysical Journal, 797 (2): 122.
[32] Han, X. L., Zhang, L., Pi, Q. and Wang, D. (2015). Lightcurve studies and magnetic activities of several eclipsing binaries. Solar and Stellar Flares and Their Effects on Planets Proceedings IAU Symposium, (320): 321–323.
[33] Barnes S. A., (2003). Geomagnetism and Aeronomy Astrophysical Journal, 80 (9): 333-350.
[34] Noyes R. W., Hartmann L. W., Baliunas S. L., Duncan D. K., Vaughan A. H., (1984). Photometry and Flare Analysis Astrophysical Journal, 45 (10): 279-763.
Cite This Article
  • APA Style

    Muallim Yakubu, Chima Abraham Iheanyichukwu, Kassimu Abdullahi Anderson. (2023). The Study of the Photometry and Flare Analysis of Kepler Flare Candidate 2MASS J22285440-1325178. American Journal of Astronomy and Astrophysics, 10(2), 14-22. https://doi.org/10.11648/j.ajaa.20231002.11

    Copy | Download

    ACS Style

    Muallim Yakubu; Chima Abraham Iheanyichukwu; Kassimu Abdullahi Anderson. The Study of the Photometry and Flare Analysis of Kepler Flare Candidate 2MASS J22285440-1325178. Am. J. Astron. Astrophys. 2023, 10(2), 14-22. doi: 10.11648/j.ajaa.20231002.11

    Copy | Download

    AMA Style

    Muallim Yakubu, Chima Abraham Iheanyichukwu, Kassimu Abdullahi Anderson. The Study of the Photometry and Flare Analysis of Kepler Flare Candidate 2MASS J22285440-1325178. Am J Astron Astrophys. 2023;10(2):14-22. doi: 10.11648/j.ajaa.20231002.11

    Copy | Download

  • @article{10.11648/j.ajaa.20231002.11,
      author = {Muallim Yakubu and Chima Abraham Iheanyichukwu and Kassimu Abdullahi Anderson},
      title = {The Study of the Photometry and Flare Analysis of Kepler Flare Candidate 2MASS J22285440-1325178},
      journal = {American Journal of Astronomy and Astrophysics},
      volume = {10},
      number = {2},
      pages = {14-22},
      doi = {10.11648/j.ajaa.20231002.11},
      url = {https://doi.org/10.11648/j.ajaa.20231002.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajaa.20231002.11},
      abstract = {The photometry and flare analysis of Kepler flare candidate 2MASS J22285440- 1325178 has been presented. The light curve shows the amplitude distributions for the 2MASS J22285440-1325178. From the light curve, the shorter amplitude represents the short duration of the flares while the larger amplitude show the highest peak of the flares, with amplitude range duration from 7457.70-15482.7700 (e-/sec). The magnitude of the flares varies with times (days) and the light curve, the plot of the light curve demonstrates the frequency of the flares and the range of the magnitude. The amplitude represents the flux peak of each flare, which indicates that flare stars have larger amplitudes and hence larger star spots than normal stars. Our data was obtained from the Milkulski Archive for Space Telescope (MAST). The instrument used for data analysis of 2MASS J22285440-1325178 candidate are python Jupiter notebook software package. In addition, aperture photometric reduction of 2MASS J22285440-1325178 at EPIC 206050032 have been carried out to obtain the light curve. Furthermore, flare amplitude was analyzed as well as the flare rise time and equivalent duration.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - The Study of the Photometry and Flare Analysis of Kepler Flare Candidate 2MASS J22285440-1325178
    AU  - Muallim Yakubu
    AU  - Chima Abraham Iheanyichukwu
    AU  - Kassimu Abdullahi Anderson
    Y1  - 2023/09/18
    PY  - 2023
    N1  - https://doi.org/10.11648/j.ajaa.20231002.11
    DO  - 10.11648/j.ajaa.20231002.11
    T2  - American Journal of Astronomy and Astrophysics
    JF  - American Journal of Astronomy and Astrophysics
    JO  - American Journal of Astronomy and Astrophysics
    SP  - 14
    EP  - 22
    PB  - Science Publishing Group
    SN  - 2376-4686
    UR  - https://doi.org/10.11648/j.ajaa.20231002.11
    AB  - The photometry and flare analysis of Kepler flare candidate 2MASS J22285440- 1325178 has been presented. The light curve shows the amplitude distributions for the 2MASS J22285440-1325178. From the light curve, the shorter amplitude represents the short duration of the flares while the larger amplitude show the highest peak of the flares, with amplitude range duration from 7457.70-15482.7700 (e-/sec). The magnitude of the flares varies with times (days) and the light curve, the plot of the light curve demonstrates the frequency of the flares and the range of the magnitude. The amplitude represents the flux peak of each flare, which indicates that flare stars have larger amplitudes and hence larger star spots than normal stars. Our data was obtained from the Milkulski Archive for Space Telescope (MAST). The instrument used for data analysis of 2MASS J22285440-1325178 candidate are python Jupiter notebook software package. In addition, aperture photometric reduction of 2MASS J22285440-1325178 at EPIC 206050032 have been carried out to obtain the light curve. Furthermore, flare amplitude was analyzed as well as the flare rise time and equivalent duration.
    VL  - 10
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Department of Industrial Physics, Enugu State University of Science and Technology, Enugu, Nigeria

  • Department of Industrial Physics, Enugu State University of Science and Technology, Enugu, Nigeria

  • Department of Physics, Air Force Institute of Technology, Kaduna, Nigeria

  • Sections